Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Nat Med ; 77(2): 306-314, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36635416

ABSTRACT

The genus Claviceps (Clavicipitaceae) is famous for producing ergot alkaloids (EAs) in sclerotia. EAs can cause ergotism, resulting in convulsions and necrosis when ingested, making these compounds a serious concern for food safety. Agroclavine (2), a typical Clavine-type EA, is a causative agent of ergotism and is listed as a compound to be monitored by the European Food Safety Authority. Clavine-type EAs are known to cause cytotoxicity, but the mechanism has not been elucidated. We performed annexin V and PI double-staining followed by flow cytometric analysis to detect apoptosis in HepG2 and PANC-1 cells after exposure to Clavine-type EAs. Clavine-type EAs reduced cell viability and induced apoptosis in both cell lines. We then performed LC-MS analysis of EAs from 41 sclerotia samples of Claviceps collected in Japan. 24 out of 41 sclerotia extracts include peptide-type EAs (ergosine/inine: 4/4', ergotamine: 5, ergocornine/inine: 6/6', α-ergocryptine/inine: 8/8', and ergocristine/inine: 9/9') and 19 sclerotia extracts among 24 sclerotia detected peptide type EAs include Clavine-type EAs (pyroclavine: 1, agroclavine: 2, festuclavine: 3) by LC-MS. We then performed a metabolomic analysis of the EAs in the sclerotia using principal component analysis (PCA). The PCA score plots calculated for EAs suggested the existence of four groups with different EA production patterns. One of the groups was formed by the contribution of Clavine-type EAs. These results suggest that Clavine-type EAs are a family of compounds requiring attention in food safety and livestock production in Japan.


Subject(s)
Claviceps , Ergot Alkaloids , Ergotism , Humans , Ergot Alkaloids/analysis , Ergot Alkaloids/chemistry , Japan , Claviceps/chemistry , Claviceps/metabolism , Peptides , Apoptosis
2.
Br J Clin Pharmacol ; 89(4): 1304-1317, 2023 04.
Article in English | MEDLINE | ID: mdl-36630197

ABSTRACT

Dopamine agonists are a key tool in the therapeutic arsenal of endocrinologists worldwide. They exert their effects by binding to dopamine-2 (D2) receptors expressed by pituitary tumour cells to modulate hormonal secretion and tumour size. They are the established first-line treatment for prolactinomas which express high levels of D2 receptors. Growing data support their use as an adjuvant treatment option for other pituitary tumours including growth hormone, adrenocorticotrophic hormones, thyroid hormone secreting adenomas and nonfunctional pituitary tumours, all of which have been shown to express D2 receptors as well, albeit to varying extents. For those pituitary tumours inadequately treated by dopamine agonist alone, combined agonism of D2 and somatostatin receptors represent a new frontier in clinical development. Here we review the development and role of dopamine agonist for the treatment of prolactinomas, the literature supporting their adjuvant use for the treatment of all other pituitary tumours, and recent progress in the development of the next generation of chimeric compounds that target D2 and other receptor subtypes highly expressed on pituitary tumour cells.


Subject(s)
Dopamine Agonists , Pituitary Neoplasms , Prolactinoma , Humans , Adenoma/drug therapy , Adenoma/metabolism , Dopamine Agonists/pharmacology , Dopamine Agonists/therapeutic use , Pituitary Neoplasms/drug therapy , Prolactinoma/drug therapy , Somatostatin/metabolism , Somatostatin/therapeutic use , Claviceps/chemistry , Biological Products/therapeutic use
3.
Toxins (Basel) ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: mdl-36136518

ABSTRACT

As the contamination of cereal grains with ergot has been increasing in Western Canada, studies were undertaken to evaluate the impacts of heating (60, 80, 120, or 190 °C) alone or in combination with pelleting on concentrations of ergot alkaloids. Fifteen samples of ergot-contaminated grain from Alberta and Saskatchewan were assayed for R and S epimers of six alkaloids (ergocryptine, ergocristine, ergocornine, ergometrine, ergosine, and ergotamine) using HPLC MS/MS. Five samples with distinct alkaloid profiles were then selected for heating and pelleting studies. Heating resulted in a linear increase (p < 0.05) of total R and total S epimers with increasing temperature, although some individual R epimers were stable (ergometrine, ergosine, ergotamine). Pelleting also increased (p < 0.05) concentrations of total R and total S epimers detected, although ergometrine concentration decreased (p < 0.05) after pelleting. A feeding study arranged in a 2 × 2 factorial structure used 48 backgrounding Angus-cross steers fed four different diets: (1) Control Mash (CM, no added ergot), (2) Control Pellet (CP), (3) Ergot Mash (EM), or (4) Ergot Pellet (EP). Pelleting heated the ergot to 90−100 °C under 4 bars pressure, but the ergot used in the feeding study was not otherwise heated. Alkaloid concentrations of EM and EP varied by up to 1.1 mg/kg depending on the feed matrix assayed. No differences among treatments were noted for growth performance, feed intake, feed conversion, concentrations of serum prolactin and haptoglobin, hair cortisol, or in temperatures of extremities measured by infrared thermography. The only negative impacts of ergot alkaloids were on blood parameters indicative of reduced immune function or chronic inflammation. Pelleting did not heighten the negative clinical outcomes of ergot, although alkaloid concentrations of pelleted feed increased depending on the matrix assayed. It was hypothesized that the heat and pressure associated with pelleting may enhance the recovery of alkaloids from pelleted feed.


Subject(s)
Claviceps , Ergot Alkaloids , Alberta , Animal Feed/analysis , Animals , Cattle , Claviceps/chemistry , Edible Grain/chemistry , Ergonovine/analysis , Ergot Alkaloids/analysis , Ergotamine/analysis , Ergotamines/analysis , Haptoglobins/analysis , Heating , Hydrocortisone , Prolactin , Tandem Mass Spectrometry/methods
4.
J Nat Prod ; 84(10): 2630-2643, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34553942

ABSTRACT

Claviceps purpurea is an ergot fungus known for its neurotropic alkaloids, which have been identified as the main cause of ergotism, a livestock and human disease triggered by ergot consumption. Tetrahydroxanthone dimers, the so-called ergopigments, presumably also contribute to this toxic effect. Overexpression of the cluster-specific transcription factor responsible for the formation of these pigments in C. purpurea led to the isolation of three new metabolites (8-10). The new pigments were characterized utilizing HRMS, NMR techniques, and CD spectroscopy and shown to be xanthone dimers. Secalonic acid A and its 2,4'- and 4,4'-linked isomers were also isolated, and their absolute configuration was investigated. The contribution of secalonic acid A, its isomers, and new metabolites to the toxicity of C. purpurea was investigated in HepG2 and CCF-STTG1 cells. Along with cytotoxic properties, secalonic acid A was found to inhibit topoisomerase I and II activity.


Subject(s)
Claviceps/chemistry , Xanthenes/chemistry , Hep G2 Cells , Humans , Molecular Structure , Topoisomerase Inhibitors , Xanthones
5.
J Sci Food Agric ; 101(3): 1047-1052, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32761809

ABSTRACT

BACKGROUND: Harmful botanical impurities may contaminate feed and feed materials and be a potential danger to animal or human health, or to the environment. The aim of this study was to establish rapid and sensitive methods that can be used in routine official controls to determine botanical impurities such as Datura stramonium, Ricinus communis, Crotaliaria spp., and Ambrosia spp. in animal feed and raw materials. Claviceps sclerotia were also detected in cereals, due to the similarities of the targets and the analytical procedure. Regulation (EU) 625/2017, which replaces Reg. 2004/882/EC, states that EU member states should conduct official controls in assessed and accredited laboratories and that the analytical methods must be validated before use by considering parameters such as specificity, precision, recovery, and measurement uncertainly. RESULTS AND CONCLUSION: The results demonstrate that all of the methods tested are suitable for the official quantitative analyses required by EU official legislation. © 2020 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Food Analysis/methods , Food Contamination/analysis , Plants, Toxic/chemistry , Ambrosia/chemistry , Animals , Claviceps/chemistry , Crotalaria/chemistry , Datura stramonium/chemistry , Edible Grain/chemistry , European Union , Humans , Ricinus/chemistry
6.
Toxins (Basel) ; 11(8)2019 07 25.
Article in English | MEDLINE | ID: mdl-31349616

ABSTRACT

Ergot, fungal genus Claviceps, are worldwide distributed grass pathogens known for their production of toxic ergot alkaloids (EAs) and the great agricultural impact they have on both cereal crop and farm animal production. EAs are traditionally considered as the only factor responsible for ergot toxicity. Using broad sampling covering 13 ergot species infecting wild or agricultural grasses (including cereals) across Europe, USA, New Zealand, and South Africa we showed that the content of ergochrome pigments were comparable to the content of EAs in sclerotia. While secalonic acids A-C (SAs), the main ergot ergochromes (ECs), are well known toxins, our study is the first to address the question about their contribution to overall ergot toxicity. Based on our and published data, the importance of SAs in acute intoxication seems to be negligible, but the effect of chronic exposure needs to be evaluated. Nevertheless, they have biological activities at doses corresponding to quantities found in natural conditions. Our study highlights the need for a re-evaluation of ergot toxicity mechanisms and further studies of SAs' impact on livestock production and food safety.


Subject(s)
Claviceps/chemistry , Ergot Alkaloids/toxicity , Mycotoxins/toxicity , Xanthenes/toxicity , Apoptosis/drug effects , Cell Survival/drug effects , Ergot Alkaloids/analysis , HeLa Cells , Humans , Jurkat Cells , Mitochondria/drug effects , Mycotoxins/analysis , Mycotoxins/pharmacology , Xanthenes/analysis
7.
Mycotoxin Res ; 34(4): 297-305, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30117108

ABSTRACT

The Ascomycete fungus Claviceps gigantea infects maize kernels and synthetizes several alkaloids, mostly dihydrolysergamides. There is limited information on the damage these toxins cause in mammals, despite reports from infested areas with 90% presence of the fungus sclerotia. With this background, it was decided to determine the biological activity of chemical compounds present in sclerotia of C. gigantea in rabbits 38 days after weaning. Sclerotia of C. gigantea were collected in fields with high incidence of the disease, ground and analysed for nutrients. Experimental diets were prepared with four treatments, where sclerotial powder was added, substituting for alfalfa flour in increasing proportions [C. gigantea/alfalfa flour (0:100, 5:95, 15:85 and 25:75)]. Total ergot alkaloid content was analysed by high-performance liquid chromatography. Male juvenile rabbits were utilised and distributed in completely randomised design with four replications. Initial weight was recorded in each animal, and experimental diet was offered. In this study, weight of animals, feed consumption and feed conversion were evaluated in individual animals. Blood samples were taken for haemograms, and finally euthanasia was practiced. The consumption of C. gigantea had a negative effect on body weight and feed consumption. The necropsies showed anomalies proportional to the consumption of feed contaminated with the fungus.


Subject(s)
Animal Feed/microbiology , Claviceps/chemistry , Diet/methods , Ergot Alkaloids/toxicity , Food Contamination , Poisoning/pathology , Animals , Body Weight , Chromatography, High Pressure Liquid , Disease Models, Animal , Ergot Alkaloids/analysis , Male , Rabbits , Weaning
8.
Sci Rep ; 8(1): 3935, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500428

ABSTRACT

Cereals were very important in ancient diets, however evidence from archaeological sites of the vessels used for processing or storing cereals is comparatively rare. Micro-organisms, as well as chemical-physical effects can easily degrade cereals during the burial period. This can lead to a complete cereal decay and to serious difficulties in estimating the intensity of use of the cereals by ancient populations. Here, we present a novel biomarker approach entailing the detection of secondary lipid metabolites produced by ergot fungi (genus Claviceps), which are common cereal pests. The aim was to identify the original presence of Gramineae and to indirectly establish if vessels were used for cereal storage/processing. The fatty acid and TAG-estolide profiles of the remains from more than 30 archaeological vessels were investigated by gas chromatography/mass spectrometry (GC/MS) and high performance liquid chromatography/high resolution mass spectrometry (HPLC/ESI-Q-ToF). The detection of lipids derived from ergot in archaeological and historic contexts rests on its complex chemistry, providing a unique and relatively recalcitrant chemical signature for cereals. This research demonstrated that the combination of our innovative biomarker approach along with environmental and archaeological evidence can provide unprecedented insights into the incidence of cereals and related processing activities in ancient societies.


Subject(s)
Archaeology , Claviceps/chemistry , Edible Grain/chemistry , Lipids/analysis , Biomarkers/analysis , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Italy , Spectrometry, Mass, Electrospray Ionization/methods
9.
Plant Dis ; 102(7): 1334-1340, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30673578

ABSTRACT

In the present study, the genetic relationships and ergot-alkaloid production of the fungus Claviceps purpurea on grasses were investigated, to determine any associations between grass host specificity, ergot-alkaloid production, and geographic origin. C. purpurea sclerotia were obtained from wild and cultivated grasses along a 300-km climatic gradient, from sub-Mediterranean to continental climates. Twenty-one infected grass samples provided 39 sclerotia for analysis of the ergot alkaloids ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, and ergocristine, and their "-inine" epimers, using liquid chromatography-tandem mass spectrometry. C. purpurea ribosomal DNA underwent molecular classification to determine any grass host or geographic specificity of ergot-alkaloid composition for the different operational taxonomic units. Molecular analysis of sclerotia ribosomal DNA showed three genetic groups, with some associations with specific grass host taxonomic groups. The ergot-alkaloid composition data were in agreement with the data obtained by molecular methods. The most frequent ergot-alkaloid epimers were ergocristine, and ergosine. The total ergot-alkaloid concentrations in sclerotia varied from 59 to 4,200 mg kg-1, which corresponds to 0.059 to 4.2 mg kg-1 in animal feed (assuming ergot alkaloids at 1,000 mg kg-1 sclerotia). Therefore, grasses can be associated with significant levels of ergot alkaloids. In addition, the ergot-alkaloid compositions of C. purpurea sclerotia can be different for infections with different C. purpurea genetic groups, because these show different ergot-alkaloid compositions.


Subject(s)
Claviceps/chemistry , Ergot Alkaloids/analysis , Plant Diseases/microbiology , Poaceae/microbiology , Chromatography, High Pressure Liquid , Claviceps/classification , Claviceps/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Ergolines/analysis , Ergonovine/analysis , Ergotamine/analysis , Ergotamines/analysis , Host Specificity , Phylogeny , Sequence Analysis, DNA , Slovenia , Tandem Mass Spectrometry
10.
Phytopathology ; 107(5): 504-518, 2017 May.
Article in English | MEDLINE | ID: mdl-28168931

ABSTRACT

Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.


Subject(s)
Claviceps/genetics , Ergot Alkaloids/genetics , Evolution, Molecular , Hypocreales/genetics , Plant Diseases/microbiology , Poaceae/microbiology , Biosynthetic Pathways , Claviceps/chemistry , Claviceps/metabolism , Endophytes , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Genomics , Hypocreales/chemistry , Hypocreales/metabolism , Multigene Family , Mycotoxins/chemistry , Mycotoxins/genetics , Mycotoxins/metabolism , Symbiosis
11.
Food Chem ; 219: 459-467, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27765252

ABSTRACT

Sorghum ergot is a disease caused commonly by C. africana. In 2015, ergot was identified for the first time in sorghum fields in Israel, leading to measures of eradication and quarantine. The aims of the study were to identify the ergot species by molecular and ergot alkaloid profile analysis, to determine the ergot alkaloid profile in pure honeydew and in infected sorghum silages and to estimate the safety of sorghum silages as a feed source. C. africana was rapidly and reliably identified by microscopical and molecular analysis. Dihydroergosine was identified as the major ergot alkaloid. Dihydrolysergol and dihydroergotamine were identified for the first time as significant ergot alkaloid components within the C. africana sclerotia, thereby providing for the first time a proof for the natural occurrence of dihydroergotamine. The sorghum silages were found to be safe for feed consumption, since the ergot alkaloids and the regulated mycotoxins were below their regulated limits.


Subject(s)
Claviceps/chemistry , Ergot Alkaloids/analysis , Plant Diseases/microbiology , Sorghum/microbiology , Edible Grain/microbiology , Ergotamines/analysis , Israel
12.
Anal Bioanal Chem ; 409(5): 1221-1230, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27873003

ABSTRACT

The fungus Claviceps purpurea produces highly toxic ergot alkaloids and accumulates these in the hardened bodies of fungal mycelium. These so-called sclerotia, or ergot bodies, replace the crop seed of infected plants, which can include numerous important food- and feedstuff such as rye and wheat. While several studies have explored details of the infection process and development of ergot bodies, little information is available on the spatial distribution of the mycotoxins in the sclerotia. Here we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) at a lateral resolution of 35 µm to visualize the distribution of two representative alkaloids, ergocristine and ergometrine, produced by Ecc93 and Gal 310 variants of C. purpurea, respectively, after infection of rye. To improve cryosectioning of this fragile biological material tissue with complex texture, we developed a practical embedding protocol based on cellulose polymers. The MALDI-MS images recorded from the so produced intact tissues sections revealed that ergometrine exhibited a relatively homogeneous distribution throughout the ergot body, whereas ergocristine was found to be enriched in the proximal region. This finding can be correlated to the morphological development of sclerotia as ergot alkaloids are only produced in the sphacelial stage. The ability to localize toxins and other secondary metabolites in intact sections of crop-infecting fungi with high lateral resolution renders MALDI-MSI a powerful tool for investigating biosynthetic pathways and for obtaining a deeper understanding of the parasite-host interaction. Graphical abstract Workflow for identification and spatial localization of ergot alkaloids in infected rye grains.


Subject(s)
Claviceps/chemistry , Ergot Alkaloids/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
13.
Mycotoxin Res ; 32(4): 207-219, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27495979

ABSTRACT

Because the occurrence of Claviceps in European pastures may have been overlooked to cause serious health problem for grazing animals, we documented the degree of Claviceps contamination in two horse pastures and estimated whether the horses could have ingested a critical quantity of alkaloids. We counted the Claviceps sclerotia and determined alkaloid levels using high performance liquid chromatography with fluorescence detection. Depending on the location, the number of sclerotia varied from 0.09 to 0.19 per square meter (central area) and from 0.23 to 55.8 per square meter (border strips). Alkaloid levels in individual sclerotia also varied in different genera of grasses, ranging from 0.98 ± 0.17 µg/kg in Agrostis sp. to 25.82 ± 9.73 µg/kg in Dactylis sp., equivalent to 0.98 µg/kg and 7.26 mg/kg. Sclerotia from Dactylis contained high levels of ergosine (0.209 % ± 0.100 %) and ergocristine (0.374 % ± 0.070 %). Depending on the localization in pastures, alkaloid levels in forage (dry matter, DM) ranged from 16.1 to 45.4 µg/kg in central areas and from 23.9 to 722 µg/kg in border strips. The amount of alkaloids that a horse could have ingested depended on its daily DM uptake, which was higher in the central areas (5.85 kg/day) than in the border strips (2.73 or 0.78 kg/day). In the central areas, this amount of alkaloids ranged from 94.2 to 265.9 µg/day; and in the border strips, from 65.3 (in 2.73 kg DM/day) to as much as 563.8 µg/day (in 0.78 kg DM/day). All these amounts are higher than the European averages for alkaloids ingested by horses via feedstuffs.


Subject(s)
Claviceps/chemistry , Claviceps/isolation & purification , Colony Count, Microbial , Ergot Alkaloids/analysis , Poaceae/microbiology , Animals , Chromatography, High Pressure Liquid , Fluorometry , Germany , Horses
14.
Fungal Biol ; 120(8): 917-930, 2016 08.
Article in English | MEDLINE | ID: mdl-27521625

ABSTRACT

Results of a survey and study of the Claviceps purpurea group of species in South Africa are being presented and five new species are described. Morphological descriptions are based on the anamorphs and four nuclear genetic loci. Claviceps fimbristylidis sp. nov. on Fimbristylis complanata was discovered wide-spread across five provinces of the country associated with water and represents the fourth Claviceps species recorded from the Cyperaceae. Claviceps monticola sp. nov. is described from Brachypodium flexum growing in mountain forests in Mpumalanga Province, as well as the northern Drakensberg southwards into the Eastern Cape Province. Claviceps pazoutovae sp. nov. is recorded from Stipa dregeana var. dregeana and Ehrharta erecta var. erecta, also associated with these mountain ranges. Claviceps macroura sp. nov. is recorded from Cenchrus macrourus from the Eastern Cape and Claviceps capensis sp. nov. from Ehrharta villosa var. villosa is recorded from the Western Cape Province. Claviceps cyperi, only recorded from South Africa is included in the study. Ergot alkaloid profiles of all species are provided and showed similarity to C. purpurea. Only C. cyperi and in lesser degree C. capensis, C. macroura, and C. pazoutovae produced ergot alkaloids in clinically significant amounts. Several reported species infect invasive grass species, native to South Africa, and thus represent potentially invasive species.


Subject(s)
Claviceps/classification , Claviceps/isolation & purification , Environmental Microbiology , Ergot Alkaloids/analysis , Chromatography, High Pressure Liquid , Claviceps/chemistry , Claviceps/genetics , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Forests , Minichromosome Maintenance Complex Component 7/genetics , Peptide Elongation Factor 1/genetics , Phylogeny , Sequence Analysis, DNA , South Africa , Tubulin/genetics , Water
15.
J AOAC Int ; 99(4): 895-898, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27455930

ABSTRACT

Ergot is a common disease of wheat and other cereal grains that is predominantly caused by Claviceps purpurea in the field, often affecting crop yield in addition to the environment. Infected grain can be contaminated with dark sclerotia, which contain fungal metabolites such as ergot alkaloids. The occurrence of ergot alkaloids in cereal grain is a major health concern for humans and livestock. Effective and rapid screening of these mycotoxins is crucial for producers, processors, and consumers of cereal-based food and feed grain. Established methods of ergot alkaloid screening based on LC-MS or GC-MS require laborious processes. A novel method using matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) MS was developed to identify four ergot alkaloids. Using dihydroxybenzoic acid as the matrix, ergosine, ergocornine, ergocryptine, and ergocristine were readily detected in individual sclerotia of C. purpurea. The accuracy of the identified ergot alkaloids was further confirmed by tandem MS analysis. MALDI-TOF MS is suitable for high-throughput screening of ergot alkaloids because it permits rapid and accurate identification, simple sample preparation, and no derivatization or chromatographic separation.


Subject(s)
Claviceps/chemistry , Ergot Alkaloids/analysis , Ergolines/analysis , Ergotamines/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods
16.
Fungal Biol ; 120(1): 104-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26693687

ABSTRACT

A novel secondary metabolite from the sclerotia of Claviceps purpurea (Fr.) Tul. is described; the structure is based on (1)H and (13)C NMR spectroscopy and electrospray mass spectrometry. It has an elemental composition C10H16N2O7 and is comprised mainly of proline and alanine moieties, although without peptide linkage. Notably, these amino-acids are also components of the cyclic tripeptide side chain of several classic ergoline alkaloids. Designated as purpurolic acid, the new compound is the principal free amino-acid in ergot and its natural abundance exceeds that of the ergoline alkaloids with which it accumulates in parallel during parasitic development. In contrast, it does not accumulate in the fungus in axenic culture, even when ergotamine is synthesised. The extent to which the compound is a metabolite of other ergot fungi worldwide is unknown. Biological activity and metabolic significance also remain unknown, but purpurolic acid could become a biomarker for detection of ergot contamination in agricultural products of temperate latitudes.


Subject(s)
Alkaloids/chemistry , Claviceps/metabolism , Alkaloids/metabolism , Claviceps/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure
19.
Toxins (Basel) ; 7(3): 659-78, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25723323

ABSTRACT

Ergot is a disease of cereals and grasses caused by fungi in the genus Claviceps. Of particular concern are Claviceps purpurea in temperate regions, C. africana in sorghum (worldwide), and C. fusiformis in pearl millet (Africa, Asia). The fungi infect young, usually unfertilized ovaries, replacing the seeds by dark mycelial masses known as sclerotia. The percentage of sclerotia in marketable grain is strictly regulated in many countries. In winter rye, ergot has been known in Europe since the early Middle Ages. The alkaloids produced by the fungus severely affect the health of humans and warm-blooded animals. In sorghum and pearl millet, ergot became a problem when growers adopted hybrid technology, which increased host susceptibility. Plant traits reducing ergot infection include immediate pollination of receptive stigmas, closed flowering (cleistogamy), and physiological resistance. Genetic, nonpollen-mediated variation in ergot susceptibility could be demonstrated in all three affected cereals. Fungicides have limited efficacy and application is weather dependent. Sorting out the sclerotia from the harvest by photocells is expensive and time consuming. In conclusion, molecular-based hybrid rye breeding could improve pollen fertility by introgressing effective restorer genes thus bringing down the ergot infection level to that of conventional population cultivars. A further reduction might be feasible in the future by selecting more resistant germplasm.


Subject(s)
Claviceps/chemistry , Claviceps/genetics , Pennisetum/microbiology , Secale/microbiology , Sorghum/microbiology , Asia , Europe , Genetic Variation , Host-Pathogen Interactions , Plant Breeding/methods , Plant Diseases/microbiology
20.
Rapid Commun Mass Spectrom ; 28(14): 1621-34, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24895259

ABSTRACT

RATIONALE: The biological activities most commonly associated with indole-diterpenoids are tremorgenicity in mammals and toxicity in insects through modulation of ion channels. The neurotoxic effects of some analogues are the cause of syndromes such as 'ryegrass staggers' and 'Paspalum staggers' in cattle and sheep. Our purpose was to obtain and interpret mass spectra of some pure Claviceps-related indole-diterpenoids (paspaline, paspalinine, paxilline, paspalitrems A and B) to facilitate identification of related compounds for which standards were not available. METHODS: C. paspali-infected Paspalum dilatatum as well as C. purpurea sclerotia obtained from infected Phalaris arundinacea were extracted and the extracts separated via liquid chromatography. Low- and high-resolution mass spectra were then obtained of known and potentially unknown indole-diterpenoids. RESULTS: At least 20 different indole-diterpenoids were detected in the C. paspali extract with molecular masses ranging from 405 Da (C28H40NO) to 517 Da (C32H40NO5). The C. purpurea sclerotia were shown to contain several indole-diterpenoids with molecular masses ranging from 405 Da (C28H40NO) to 419 Da (C28H38NO2). CONCLUSIONS: This study demonstrates for the first time that C. purpurea may also produce indole-diterpenoids. This might explain why grazing of Phalaris spp. is occasionally connected with a tremorgenic syndrome in cattle, called 'phalaris staggers'.


Subject(s)
Claviceps/chemistry , Diterpenes/chemistry , Indoles/chemistry , Mass Spectrometry/methods , Diterpenes/analysis , Fourier Analysis , Indoles/analysis , Phalaris/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...